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The tumbling or ¯ ow-aligning nature of nematics as predicted
from the Slightly Bending Rod molecular model

by F. GRECO and G. MARRUCCI*
Department of Chemical Engineering, University of Naples Federico II,

Piazzale Tecchio, 80125 Napoli, Italy

(Received 23 May 1996; accepted 20 July 1996 )

Existing calculations of the Leslie coe� cients for rigid rods endowed with the Maier± Saupe
potential are here extended to investigate the consequences of relaxing the constraint of a
complete molecular rigidity. In particular, the recently proposed model of the Slightly Bending
Rod (SBR) is used to calculate the ratio a3 /a2, the sign of which controls whether the nematic
is of the tumbling or ¯ ow-aligning type. The results show that SBRs are more prone to
tumbling than fully rigid rods. The ¯ ow-aligning to tumbling transition, which takes place by
increasing the order parameter (e.g. by decreasing the temperature) is shifted, for SBRs, to a
smaller value of the order parameter.

1. Introduction In order to obtain some qualitative information on
the problem outlined above, we need to relax the rigidityThe development of molecular theories of the nematic

state has been mainly based on the rigid rod model, constraint of the rod-like molecular model. For the
equilibriumsituation, various theories of nematic behavi-both for statics [1, 2] and dynamics [3, 4]. More spe-

ci® cally, the rigid rod model has been very successful in our which account for ¯ exibility are in fact available
(see, e.g. [11± 15]). These models, however, which allowpredicting the essential features of nemato-dynamics.

Indeed, this molecular model properly reduces to the the molecule to deviate substantially from the straight
rod-like con® guration, are too complicated for solving,continuum theory of Leslie and Ericksen [5, 6] in the

limit of slow ¯ ows, allowing for explicit predictions of or even formulating, dynamical problems. Then, a simple
way of dealing with ¯ exibility is by using a perturbationthe Leslie coe� cients [7, 8]. Also the non-linear proper-

ties, which are particularly relevant for the polymeric approach, that is, by modelling the molecules as slightly
bending rods.nematics, are well described, qualitatively at least, by

the model [9]. For this purpose, the SBR model was introduced in
previous work [16], where also a two-dimensional ver-On the other hand, actual nematogenic molecules are
sion of the dynamical equation was written down,not always rigid and rod-like. Often some degree of
though no explicit solutions were derived. For the full¯ exibility is present, and an understanding of how that
three-dimensional SBR model, only equilibrium calcula-might a� ect the observed behaviour could be useful. In
tions have been made so far [17]. Since dynamic calcula-particlar we would like to know in which d̀irection’
tions in three dimensions remain di� cult even with thissome characteristic transitions are shifted with decreas-
simple model, we reconsider here the two dimensionaling rigidity of the molecule. Relevant transitions, beyond
version of the theory in order to derive a ® rst dynamicalthe well-known thermodynamic one from the isotropic
result, namely the tumbling to ¯ ow-aligning transitionto the nematic state, are that from a tumbling-type (non-
in weak shear ¯ ows.¯ ow-aligning type) nematic to a ¯ ow-aligning one, which

The paper is organised as follows. In a ® rst section,occurs by decreasing the strength of the nematogenic
together with recalling the SBR model itself, the solutionpotential [7], and its dynamic analogue which takes
of the equilibrium problem in two dimensions is given,place with increasing shear rate in the non-linear range
which of course di� ers from the three-dimensional one[9, 10]. We would expect that the critical values of the
previously derived [17]. On the other hand, the equilib-relevant parameters (temperature, concentration or
rium solution is indispensable for solving the dynamicalshear rate, etc.) at these transitions are a� ected by
problem considered in this paper, where an expansionmolecular ¯ exibility, though we do not even know
around the equilibrium state is in fact required. Thewhether they would increase or decrease.
dynamical problem is dealt with in two sections. First
the dynamical equation is written down, and speci® ed*Author for correspondence.
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12 F. Greco and G. Marrucci

for the case of a steady shear ¯ ow. Next, the explicit
solution in the linear limit of slow ¯ ows is derived, and SM=

I1

I0
Õ

U

6B

I1

I0A
I2

I0
Õ

I2
1

I2
0B (5)

compared with that for the rigid rod model. A short
discussion concludes the paper. where the Ips are the following integrals:

Ip= P
p

0
dQ(cos2Q)p

exp (US cos2Q) (6)2. Equilibrium of the two-dimensional SBR model

The SBR model assumes that the rod is at any instant
a circular arc of small non-dimensional curvature e= Of course SM can be eliminated from equations (4) and
L /r, where L is rod length and r is the curvature radius. (5), so that the self-consistency problem reduces to the
Of course r, hence e, is a dynamic variable. The model single equation:
is completed by specifying the con® gurational energy
which, under equilibrium conditions and for the two- S=

I1

I0
Õ

1

6B

I1

I0C1+UA
I2

I0
Õ

I2
1

I2
0BD (7)

dimensional case considered in this work, is written as
[16] Equation (7) generalizes the self-consistency equation of

Maier and Saupe (in two dimensions) to the SBR case,
and reduces to the classical result for B � 2.

E(Q, e)

kT
=Õ UAS Õ

e2

6
SMB cos2Q+B

e2

2
(1)

Solution of a self-consistent equation is generally
found by trial and error. However, once the result forwhere Q is the angle that the rod, at its mid-point, makes
the rigid rod case is found ( left hand curve in ® gure 1;with the director. One great advantage of working in
also see [10]), no further trial and error procedure istwo dimensions is that the dynamic variables of the SBR
required for the SBR. Indeed, in view of the expansionmodel reduce to the curvature e and the angle Q only.
procedure implicit in the model, the c̀orrection’ can beThe two terms in equation (1) are the nematic and
obtained in terms of rigid rod results only. To proceed,the bending energies, respectively. Indeed B is the non-
equation (7) is further elaborated to a form where alldimensional bending modulus which the SBR model
the Ips are calculated at the zeroth order, that is, byassumes to be large, so that the curvature e remains
using rigid rod values. The Ips appearing in the lastsmall at all times. In the nematic term, U is the non-

dimensional strength of the Maier± Saupe interaction
[2], and S and SM are the following averages:

S=T A1 Õ
e2

6B cos2QU (2)

SM= cos 2Q (3)

The ® rst of the two averages is the order parameter S

of the nematic; the second, i.e. SM, is the pseudo-order
parameter of the mid-points only. Both these averages
are made with the equilibrium distribution which, of
course, is a Boltzmann distribution with the energy given
in equation (1).

Since the energy expression again contains the aver-
ages S and SM, the procedure for determining these
averages is one of self-consistency, conceptually analo-
gous to the classical Maier± Saupe case [2]. The problem
is somewhat more complex here only because the two
averages must be calculated simultaneously. A drastic
simpli® cation is obtained, however, by virtue of the weak
bending assumption which allows expansion in power
series of the s̀mall parameter’ 1/B. After straightforward

Figure 1. Equilibrium order parameter S as a function of thecalculations, the self-consistency equations then become
Maier± Saupe potential intensity U. The left hand curve is
for rigid rods (RR) while the right hand one is for an SBR
having B=5; U* marks the isotropic± nematic transitionS=A1 Õ

1

6BB SM (4)
which, in two dimensions, is second order.
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13T umbling or ¯ ow-aligning of SBR nematics

term of that equation can already be calculated at the variable, a Smoluchowski equation for the orientational
part alone of the distribution function can be written aszeroth order, since the whole term is of order 1/B.

Conversely, the other term in equation (7) (i.e. I1 /I0) [16]
needs further expansion into the rigid rod contribution
plus a correction of order 1/B. qYs

qt
= q

qhCDA
qYs

qh
Õ Ys

q ln Zf

qh B Õ YsvD (11)
A conceptual complication in this expansion proced-

ure arises, however, because of the in® nite steepness of where Ys(h, t) is the s̀low’ orientational distribution,
the S(U) curve at the isotropic± nematic transition (see and D is a rotatory di� usion coe� cient. The pseudo-
® gure 1), which is second order in two dimensions. It potential, Õ ln Zf , and the ¯ ow-induced angular velocity
appears convenient, therefore, to invert the role of the S v are de® ned as follows:
and U variables, that is to expand the function U(S)

instead of S(U). We then write, at any given S
Zf= P

+2

Õ 2
de g1/2 exp (Õ E/kT ) (12)

U=UÂ +d (8)

where U and UÂ refer to the SBR and rigid rod cases,
respectively, and d is an S-dependent correction, of order

v= P
+2

Õ 2
de g1/2 exp (Õ E/kT )g Õ 1

hh
V

h

Zf
(13)1/B. Substituting equation (8) into equation (7) and

performing the expansion we obtain
Here, E is the energy of the SBR, a function of h, e, and
t (a somewhat di� erent function from that in equa-d=

1

6BAU+
1

I2/I0 Õ S2B (9)
tion (1), because of the di� erent angle; cf. equation (6)
in [16]), and g is the determinant of the metric tensor,

where all quantities are now calculated at the zeroth
the elements of which are given byorder, i.e. for the rigid rod. Equation (9) gives the

h̀orizontal distance’ between the two curves in ® gure 1.
g
hh

=
1

L P
L/2

Õ L/2
ds

qR

qh

qR

qh
;Of course, in view of the linearity in 1/B, a single value

of B can be used to portray the SBR correction. The
curve in ® gure 1 has been drawn for B=5.

g
ee

=
1

L P
L/2

Õ L/2
ds

qR

qe

qR

qe
;

Figure 1 shows that, as expected, at equal intensity U

of the interaction, the SBR system is more disordered
g
eh

=g
he

=0 (14)than the rigid rod one. Conversely, if we require that
the two systems attain the same value of the order where R is the vector joining the rod mid-point to the
parameter S, larger U values are needed for the SBR running point located at s along the SBR. Finally, V

h
in

system. In particular, since the isotropic± nematic trans- equation (13) is linked to the velocity gradient k in the
ition for the rigid rod in two dimensions occurs at S= following way:
0 and UÂ *=2 [10], where equation (9) gives d=2/3B,

we obtain at the transition V
h
=

1

L P
L/2

Õ L/2
ds

qR

qh
k R (15)

U*=UÂ *A1+
1

3BB (10) The expansion procedure which is inherent to the
SBR model greatly simpli® es the mathematics outlined
in these equations. To begin with, V

h
is immediately3. Dynamical equation in shear ¯ ow

calculated through the expansion of R(s). For a shearAs stated in the previous section, the con® guration
¯ ow with the shear rate cÇ , the result, up to second ordervariables of the two-dimensional SBR are only two,
in e, isnamely an orientation angle and a curvature. In formu-

lating the dynamical problem, it proves convenient to
V

h
=Õ cÇ

L 2

12Asin2 h Õ
7 sin2 h Õ 3

80
e2B (16)measure molecular orientation from some ® xed direc-

tion, rather than from the director (as in statics), because
the latter is generally unknown beforehand. Thus, we In a similar way, the metric tensor is readily calculated
shall indicate with h the angle between the tangent to (again, up to second order in e). Of special relevance
the rod mid-point and the shear direction (h should not is the hh-component which comes out g

hh
=

be confused with Q of the previous section). As discussed (L 2/12)(1 Õ e2/80), from which we obtain
in [16], the two dynamic variables h and e change in
time at a di� erent rate. The curvature e is a f̀ast’ variable, g Õ 1

hh
V

h
=Õ cÇ sin2 hC1 Õ

3

80A1 Õ
cos2 h

sin2 hB e2

D (17)
whereas h is s̀low’. Hence, by averaging over the fast
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14 F. Greco and G. Marrucci

This expression is all that is needed to calculate v from 4. Stationary solutions

Similarly to the rigid rod case [10], stationary solu-equation (13) to within order 1/B. Indeed, since g1/2

appears in both the numerator and denominator, it only tions of equation (11) (with v and ln Zf given by
equations (18) and (19), respectively) are readily found.contributes higher order terms. For a similar reason, the

Boltzmann factor e� ectively reduces in this calculation Actually to solve the equation, it proves convenient (see
[10]) to change back again from the angular variable hto the simple form exp (Õ 1/2Be2). We then obtain
measured with respect to the shear direction to the angle
Q from the director. We then obtain for the stationaryv=Õ cÇ sin2 hC1 Õ

3

80

1

BA1 Õ
cos2 h

sin2 hBD (18)
distribution function Ys(Q)

With respect to the case of the rigid rod model, for
which v=Õ cÇ sin2 h, the c̀orrection’ introduced by the
SBR model, though of order 1/B, is in fact very import- Ys(Q, b)=

N

h(Q, b)C P Q

0
dxh(x, b)+ P

p

0
dxh(x, b)

exp (pcÇ /2D)Õ 1Dant. Mathematically, it is seen immediately that in the
neighbourhood of h=0 the correction term is dominant.
Physically, this is due to a direct e� ect of curvature. (20)
Indeed, while the rigid rod at h=0 is not acted upon
by the ¯ ow, the SBR has a sort of e� ective thickness ln h(Q, b)=Õ UA1 Õ

1

3BB cos 2Q cos2Q
(due to in¯ ection) which causes the ¯ ow to exert a non-
zero rotating torque even in the horizontal position (see
® gure 2). In other words, the SBR molecule is more +

cÇ

2DCQ Õ A
1

2
Õ

3

80

1

BB sin (2b+2Q)D (21)
prone to tumbling in a shear ¯ ow than its fully rigid
counterpart. Since the tumbling period of a slender rod

where N is the normalisation factor, and the parameteris largely determined by the slowing down which takes
b is the (yet unknown) angle between the director andplace in the neighbourhood of h=0, we envisage a
the shear direction. For given values of U, B, and cÇ /D,signi® cantly shorter period for the SBR than for the
the angle b must be determined (generally by trial andrigid rod. We also expect that this property will be
error) from the symmetry conditionre¯ ected in the characteristic ratio a3 /a2 of the Leslie

coe� cients, to be explicitly calculated in the following
section. sin 2Q P

p

0
dQYs(Q, b)sin 2Q=0 (22)

To conclude on the Smoluchowski equation, we ® nally
report the expression for the pseudo-potential Õ ln Zf

The problem, however, does not require trial andwhich, to within terms of order 1/B, comes out as
error procedures in the limit of slow ¯ ows, i.e. for cÇ � 0.

Indeed, by expanding in the small parameter cÇ (as wellln Zf=UA1 Õ
1

3BB ( cos2h cos2h+ sin 2h sin 2h )
as by again using the smallness of 1/B, whenever
required), cumbersome but straightforward calculations(19)
give for the Leslie angle b the result

where it is understood that the average . . . is here
made through the slow distribution function Ys(h, t).

cos2b=
I0

I1A1 Õ
p2

I2
0B+

1

6BC
I0

I1A1 Õ
p2

I2
0B AU

I2

I0
+

9

20B
Õ U

I1

I0A1+
p2

I2
0BD (23)

where the Ips are the same S-dependent integrals
appearing in the equilibrium problem, given in equa-
tion (6). Of course, since we are in the limit of slow
¯ ows, the S value appearing in the Ips is itself the
equilibrium order parameter. In obtaining the result of
equation (23), we also used the equilibrium relationship,
equation (4), linking S to SM= cos 2Q , the latter being
the average which originally appears in equation (21).Figure 2. Di� erently from the rigid rod, a bending rod aligned

The Leslie angle b can be converted into the ratioto the shear direction remains subjected to a torque due
to ¯ ow. a3 /a2 of Leslie coe� cients through the well known
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15T umbling or ¯ ow-aligning of SBR nematics

relationship [18]: dominant in that neighbourhood. The situation is similar
to the one discussed previously for the order parameter
curve in ® gure 1. In a close analogy, we can here switch

a3

a2
=

1 Õ cos2b

1+cos2b
(24)

to the h̀orizontal distance’ e de® ned as
Figure 3 reports a3 /a2 as a function of S for both the S=SÂ +e (25)
rigid rod case (B=2) and the SBR. Here (as in ® gure 1

where S and SÂ refer to the SBR and rigid rod cases,for the equilibrium situation), a single representative
respectively, at an equal value of the Leslie ratio a3 /a2.curve (B=5) su� ces, because of the expansion in 1/B.

In calculating e from equations (23) and (25), it is to beOf course, only the positive branch of the a3/a2 versus
kept in mind that, since the Ip integrals contain both SS curve could be obtained in this way, i.e. from equa-
and U, U must also be expanded astion (23) for the Leslie angle. The solution reported in

equation (20) holds only for the stationary case, and a
di� erent one would apply to the tumbling situation. On U(S)=UÂ (SÂ )+d(SÂ )+

dUÂ

dSÂ K SÂ e (26)
the other hand, the important message is already con-
tained in the result reported in ® gure 3, namely that the where d(S) is given by equation (9), and dU/dS=
¯ ow-aligning to tumbling transition in the linear limit [(I2 /I0 Õ S2)Õ 1 Õ U]/S. Straightforward calculations
takes place at smaller values of the order parameter for then give for the horizontal distance between the curves
the semi-rigid molecule. in ® gure 3:

It should here be mentioned that the SBR curve in
® gure 3 was not computed directly from equation (23);

e=Õ
S

6BG1 Õ
9

20CA
I2

I0
Õ S2BN A

I2

I0
Õ

I2
0+p2

I2
0 Õ p2 S2BDHin fact, that equation is not the last step of the expansion

in 1/B. On the one hand, the ® rst term on the right hand (27)
side of equation (23) is not strictly the zero order

In this equation, the quantity in braces is always positive,contribution of the expansion (i.e. the rigid rod result),
hence e is negative. In particular, therefore, the transitionbecause the Ip integrals there appearing themselves
value Str for the SBR is smaller (see ® gure 3) than thatcontain a contribution of order 1/B. Secondly, because
for the rigid rod (SÂ tr=0 5́5 in two dimensions [9]).we are interested in the situation where a3 /a2 approaches

zero (marking the transition from ¯ ow-aligning behavi-
5. Conclusionsour to tumbling), again the 1/B correction term becomes

The main results of this paper can be summarized as
follows. As regards equilibrium, the SBR model qualitat-
ively reproduces (in two dimensions as well as in three
[17]) the result which is also obtained from more
sophisticated models of semi-rigid chains [11± 15],
namely that, for equal values of the potential intensity
U, the order parameter S in the semi-rigid case is smaller
than for the rigid rod.

The important new information concerns the e� ect of
molecular semi-rigidity upon the tumbling tendency of
the nematic phase which, perhaps contrary to intuition,
turns out to be enhanced. As shown by ® gure 3, the
tumbling range (from S=Str to S=1) is more extended
in the SBR case. It is plausible that this e� ect is due to
the change in the quantity v given by equation (18). Of
course, by imagining that molecular ¯ exibility is pro-
gressively increased, the tumbling character of the nem-
atic phase must give way to ¯ ow aligning behaviour
throughout the S range, since we must recover the
asymptotic results for fully ¯ exible nematogenic chains
[19, 20]. Thus, we may conclude that the behaviour of

Figure 3. The characteristic Leslie coe� cient ratio a3 /a2 as a Str with increasing molecular ¯ exibility is non-mono-
function of the equilibrium order parameter for both rigid

tonic. On the other hand, a non-monotonic behaviourrod (RR) and SBR molecules. The left hand curve is for
is also implicit in the result by Subbotin [21], whichan SBR with B=5; Str marks the ¯ ow-aligning to tumbling

transition. was obtained in the context of a considerably di� erent
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16 T umbling or ¯ ow-aligning of SBR nematics
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108A, 546.is in progress to attempt analogous calculations in three

[12] ten Bosch, A., Maissa, P., and Sixou, P., 1983, Phys.
dimensions, which seem to be considerably more di� - L ett., 94A, 298.
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